skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "CHANDA, ANINDYA"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quasigeodesic behavior of flow lines is a very useful property in the study of Anosov flows. Not every Anosov flow in dimension three is quasigeodesic. In fact, until recently, up to orbit equivalence, the only previously known examples of quasigeodesic Anosov flows were suspension flows. In a recent article, the second author proved that an Anosov flow on a hyperbolic 3-manifold is quasigeodesic if and only if it is non-$$\mathbb {R}$$-covered, and this result completes the classification of quasigeodesic Anosov flows on hyperbolic 3-manifolds. In this article, we prove that a new class of examples of Anosov flows are quasigeodesic. These are the first examples of quasigeodesic Anosov flows on 3-manifolds that are neither Seifert, nor solvable, nor hyperbolic. In general, it is very hard to show that a given flow is quasigeodesic and, in this article, we provide a new method to prove that an Anosov flow is quasigeodesic. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. We construct one dimensional foliations which are subfoliations of two dimensional foliations in 3-manifolds. The subfoliation is by quasigeodesics in each two dimensional leaf, but it is not funnel: not all quasigeodesics share a common ideal point in most leaves. 
    more » « less